Why is the “…world is failing to grasp the extent of threats posed by biodiversity loss and the climate crisis?” This is no simple question and the answer is complicated. One part of the answer for me comes from a book I read years ago entitled Amusing Ourselves to Death by Neil Postman. If you haven’t yet read this book, you might want to consider it.

Excerpts from this newly published report: “Environmental deterioration is infinitely more threatening to civilisation than Trumpism or Covid-19…” and “Dealing with the enormity of the problem requires far-reaching changes to global capitalism, education and equality…”

Undisclosed: Most Homebuyers And Renters Aren’t Warned About Flood Or Wildfire Risk

Humans disconnect from, and arrogance towards, nature and Earth systems has led to unprecedented vulnerability. Climate chaos is now exposing how human habitat is burdened with structural vulnerability, with the real estate industry being just one example. Major reform is required. No more business as usual!
truck in flooded field
Undisclosed: Most Homebuyers And Renters Aren’t Warned About Flood Or Wildfire Risk

System Error

Infinite economic growth flies in the face of real limits that exist in the Earth’s biosphere. Excessive loading of carbon into the atmosphere has disrupted the earth’s natural carbon cycle and has changed our weather patterns that were stable before the industrial revolution. Our monoculture and corresponding destruction of diversity has led to a global pandemic that is threatening to bring down civilization as we know it. These phenomena are integrally linked to humanity’s obsession with growth. Time for de-growth!

Becoming a Spokesperson on Deep Adaptation

Christian Stalberg, human habitat relocalization and biomimicry evangelist in the Sierra Nevada of California, USA. Professional backgrounds in: energy efficient buildings; disaster readiness; villagification; farming; appropriate technology; telecomputing; construction; cooperatives; intentional communities and ecovillages. “Because of climate chaos, we are all vulnerable to lifeline (e.g. food, water, energy) failures, and should be prepared.”

– from Source a Spokesperson on Deep Adaptation by Jem Bendell

Surrealistic

san francisco climate strike march

As I marched through San Francisco with at least 8,000 (and possibly as many as 40,000) other marchers on September 20th, I found myself heartened. California is known for its non-judgmental, laid-back attitudes and there would have been more people if the metro area of this size had been elsewhere. The march made three stops along their route: 1) BlackRock; 2) Pacific Gas & Electric; and, 3) Immigration and Customs Enforcement (ICE). I was carrying a small sign that said ‘Stop Killing the Earth. There is No Planet B’ along with a butterfly kite on top of a bamboo pole. Stopping at the large glass lobby of BlackRock allowed me to push my sign and the butterfly against the window enabling the people inside the lobby gawking at the protesters to plainly see my messaging instrument. I wondered: did even one person inside the lobby that Friday afternoon experience any reflection about the connection between what BlackRock does to make money and killing the earth? I’ll likely never know.

‘Wood wide web’—the underground network of microbes that connects trees—mapped for first time

A fungus known as a Dermocybe forms part of the underground wood wide web that stitches together California’s forests.

Kabir Gabriel Peay

‘Wood wide web’—the underground network of microbes that connects trees—mapped for first time

Trees, from the mighty redwoods to slender dogwoods, would be nothing without their microbial sidekicks. Millions of species of fungi and bacteria swap nutrients between soil and the roots of trees, forming a vast, interconnected web of organisms throughout the woods. Now, for the first time, scientists have mapped this “wood wide web” on a global scale, using a database of more than 28,000 tree species living in more than 70 countries.

“I haven’t seen anybody do anything like that before,” says Kathleen Treseder, an ecologist at the University of California, Irvine. “I wish I had thought of it.”

Before scientists could map the forest’s underground ecosystem, they needed to know something more basic: where trees live. Ecologist Thomas Crowther, now at ETH Zurich in Switzerland, gathered vast amounts of data on this starting in 2012, from government agencies and individual scientists who had identified trees and measured their sizes around the world. In 2015, he mapped trees’ global distribution and reported that Earth has about 3 trillion trees.

Inspired by that paper, Kabir Peay, a biologist at Stanford University in Palo Alto, California, emailed Crowther and suggested doing the same for the web of underground organisms that connects forest trees. Each tree in Crowther’s database is closely associated with certain types of microbes. For example, oak and pine tree roots are surrounded by ectomycorrhizal (EM) fungi that can build vast underground networks in their search for nutrients. Maple and cedar trees, by contrast, prefer arbuscular mycorrhizae (AM), which burrow directly into trees’ root cells but form smaller soil webs. Still other trees, mainly in the legume family (related to crop plants such as soybeans and peanuts), associate with bacteria that turn nitrogen from the atmosphere into usable plant food, a process known as “fixing” nitrogen.

The researchers wrote a computer algorithm to search for correlations between the EM-, AM-, and nitrogen-fixer–associated trees in Crowther’s database and local environmental factors such as temperature, precipitation, soil chemistry, and topography. They then used the correlations found by the algorithm to fill in the global map and predict what kinds of fungi would live in places where they didn’t have data, which included much of Africa and Asia.

Local climate sets the stage for the wood wide web, the team reports today in Nature. In cool temperate and boreal forests, where wood and organic matter decay slowly, network-building EM fungi rule. About four in five trees in these regions associate with these fungi, the authors found, suggesting the webs found in local studies indeed permeate the soils of North America, Europe, and Asia.

By contrast, in the warmer tropics where wood and organic matter decay quickly, AM fungi dominate. These fungi form smaller webs and do less intertree swapping, meaning the tropical wood wide web is likely more localized. About 90% of all tree species associate with AM fungi; the vast majority are clustered in the hyperdiverse tropics. Nitrogen fixers were most abundant in hot, dry places such as the desert of the U.S. Southwest.

Charlie Koven, an Earth system scientist at the Lawrence Berkeley National Laboratory in California, applauds what he says is the first global forest microbe map. But he wonders whether the authors missed some important factors that also shape the underground world. Hard-to-measure processes such as nutrient and gas loss from the soil could affect where different microbes live; if so, the study’s predictions could be less accurate, he says.

Despite such uncertainties, having the first hard numbers for which tree-associated microbes live where will be “very useful,” Treseder says. The findings could, for example, help researchers build better computer models to predict how much carbon forests will squirrel away and how much they will spew into the atmosphere as the climate warms, she says.

Crowther, however, is ready to make a prediction now. His results suggest that as the planet warms, about 10% of EM-associated trees could be replaced by AM-associated trees. Microbes in forests dominated by AM fungi churn through carbon-containing organic matter faster, so they could liberate lots of heat-trapping carbon dioxide quickly, potentially accelerating a climate change process that is already happening at a frightening pace.

That argument is “a little bit more tenuous” to Treseder. She says scientists are still puzzling out how different soil fungi interact with carbon. But, she adds, “I’m willing to be convinced.”